목록ImageDataGenerator (2)
갬미의 성장일기

두번째 코스에서는 Computer vision에 대해 학습합니다. assignment 기준 다음 순서로 학습이 진행됩니다. 1주차: CNN modeling 2주차: Data Augmentation 3주차: Inception v3 model trainfer learning 4주차: Multiclass classification CNN modeling with Data augmentation (+binary class, Multiclass classification) course2 week4 assignment 발췌 data: 가위바위보 손 모양 데이터 = multi class classification # Create an ImageDataGenerator and do Image Augmentation t..

Coarse1에서는 기본적인 개요에 대해 학습합니다 4주차 assignment 발췌 import tensorflow as tf # GRADED FUNCTION: train_happy_sad_model def train_happy_sad_model(): DESIRED_ACCURACY = 0.999 ## 한 epoch가 끝날때 마다 'accuracy' 값을 확인하고 DESIRED_ACCURACY 이상일때 학습 종료 class myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs): if (logs.get('accuracy') > DESIRED_ACCURACY): print("\nReached 99.9% accuracy so c..